Polygon simplification by minimizing convex corners

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polygon Simplification by Minimizing Convex Corners

Let P be a polygon with r > 0 reflex vertices and possibly with holes. A subsuming polygon of P is a polygon P ′ such that P ⊆ P ′, each connected component R′ of P ′ subsumes a distinct component R of P , i.e., R ⊆ R′, and the reflex corners ofR coincide with the reflex corners ofR′. A subsuming chain of P ′ is a minimal path on the boundary of P ′ whose two end edges coincide with two edges o...

متن کامل

Geodesic-Preserving Polygon Simplification

Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-todescribe linear-time method to replace an input polyg...

متن کامل

Strictly Convex Corners Scatter

We prove the absence of non-scattering energies for potentials in the plane having a corner of angle smaller than π. This extends the earlier result of Bl̊asten, Päivärinta and Sylvester who considered rectangular corners. In three dimensions, we prove a similar result for any potential with a circular conic corner whose opening angle is outside a countable subset of (0, π).

متن کامل

Convex Polygon Intersection Graphs

Geometric intersection graphs are graphs determined by the intersections of certain geometric objects. We study the complexity of visualizing an arrangement of objects that induces a given intersection graph. We give a general framework for describing classes of geometric intersection graphs, using arbitrary finite base sets of rationally given convex polygons and rationally-constrained affine ...

متن کامل

Minimizing Convex Functions by Continuous Descent Methods

We study continuous descent methods for minimizing convex functions, defined on general Banach spaces, which are associated with an appropriate complete metric space of vector fields. We show that there exists an everywhere dense open set in this space of vector fields such that each of its elements generates strongly convergent trajectories.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2019

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2019.05.016